Calculus 12

Foundational Outcomes

Website References

Website references contained within this document are provided solely as a convenience and do not constitute an endorsement by the Department of Education of the content, policies, or products of the referenced website. The department does not control the referenced websites and subsequent links, and is not responsible for the accuracy, legality, or content of those websites. Referenced website content may change without notice.

Regional Education Centres and educators are required under the Department's Public School Programs Network Access and Use Policy to preview and evaluate sites before recommending them for student use. If an outdated or inappropriate site is found, please report it to <curriculum@novascotia.ca>.

© Crown copyright, Province of Nova Scotia, 2021 Prepared by the Department of Education and Early Childhood Development

This is the most recent version of the current curriculum materials as used by teachers in Nova Scotia.

The contents of this publication may be reproduced in part provided the intended use is for non-commercial purposes and full acknowledgment is given to the Nova Scotia Department of Education.

Outcomes Framework Calculus 12 (2021-22)

The **Foundational Outcomes** identified in this document represent outcomes determined to be relevant for future learning in mathematics. Decisions about foundational outcomes were made in consultation with teachers, provincial mathematics team, Board and Regional Centre staff. In response to feedback, some changes have been made to the 2021-2022 foundational outcomes to ensure continuity of learning within and across grade levels. The foundational outcomes are meant to guide teachers in making decisions about creating learning experiences that will prepare and engage their learners in a responsive way. However, a teacher's professional judgment remains the most important guide to effectively responding to the needs of their learners.

Colour coding has been used to identify outcomes and indicators as foundational (green), optional (orange) or non-foundational (red) for the 2021-2022 school year.

- **A1** Apply, understand, and explain average and instantaneous rates of change and extend these concepts to secant line and tangent line slopes.
- **A2** Demonstrate an understanding of the definition of the derivative
- **A3** Demonstrate an understanding of implicit differentiation and identify situations that require implicit differentiation
- **B1** Calculate and interpret average and instantaneous rate of change
- **B2** Calculate limits for function values and apply the properties with and without technology
- **B3** Remove removable discontinuities by extending or modifying a function
- **B4** Apply the properties of algebraic combinations and composites of continuous functions
- **B5** Find where a function is not differentiable and distinguish between corners, cusps, discontinuities, and vertical tangents
- **B6** Derive, apply, and explain power, sum, difference, product and quotient rules
- **B7** Apply the chain rule to composite functions
- **B8** Use derivatives to analyze and solve problems involving rates of change
- **B9** Apply the rules for differentiating the six trigonometric functions

B10 (Optional) Apply the rules for differentiating the six inverse trigonometric functions (recognition)

B11 Calculate and apply derivatives of exponential and logarithmic functions

B12 (Optional) Apply Newton's method to approximate zeros of a function

B13 Estimate the change in a function using differentials and apply them to real world situations

B14 Solve and interpret related rate problems

B15 Demonstrate an understanding of critical points and absolute extreme values of a function

B16 Find the intervals on which a function is increasing or decreasing

B17 Solve application problems involving maximum or minimum values of a function

B18 Apply rules for definite integrals

B19 Apply the Fundamental Theorem of Calculus

B20 Compute indefinite and definite integrals by the method of substitution

B21 (Optional) Apply integration by parts to evaluate indefinite and definite integrals

B22 Solve problems in which a rate is integrated to find the net change over time

B23 (Optional) Solve a differential equation of the form dy/dx = g(x)h(y), in which the variables are separable

B24 (Optional) Solve problems involving exponential growth and decay

B25 (Optional) Apply Euler's method to find approximate solutions to differential equations with initial values

- **C1** Identify the intervals upon with a given function is continuous and understand the meaning of a continuous function
- C2 Understand the development of the slope of a tangent line from the slope of a secant line
- C3 Find the equations of the tangent and normal lines at a given point
- **C4** Demonstrate an understanding of the connection between the graphs of f and f'.
- **C5** Apply the First and Second Derivative Tests to determine the local extreme values of a function

C6 Determine the concavity of a function and locate the points of inflection by analyzing the second derivative

C7 Solve initial value problems of the form dy/dx = f(x), $y_0 = f(x_0)$, where f(x) is a function that students recognize as a derivative.

C8 Understand the relationship between the derivative and the definite integral as expressed in both parts of the Fundamental Theorem of Calculus

C9 Construct antiderivatives using the Fundamental Theorem of Calculus

C10 Find antiderivatives of polynomials, ekx, and selected trigonometric functions of kx

C11 (Optional) Construct slope fields using technology and interpret them as visualizations of differential equations

D1 Apply and understand how Riemann's sum can be used to determine the area under a polynomial curve

D2 Demonstrate an understanding of the meaning of area under the curve

D3 Express the area under the curve as a definite integral

D4 Compute the area under the curve using numerical integration procedures

D5 Apply integration to calculate areas of regions in a plane

D6 (Optional) Apply integration (by slices or shells) to calculate volumes