Mathematics 10

Outcomes

```
Website References
Website references contained within this document are provided solely as a convenience and do not constitute an endorsement by the Department of Education of the content, policies, or products of the referenced website.
The department does not control the referenced websites and subsequent links, and is not responsible for the accuracy, legality, or content of those websites. Referenced website content may change without notice.
Regional Education Centres and educators are required under the Department's Public School Programs Network Access and Use Policy to preview and evaluate sites before recommending them for student use. If an outdated or inappropriate site is found, please report it to <curriculum@novascotia.ca>.
```


Mathematics Grade 10

© Crown copyright, Province of Nova Scotia, 2022
Prepared by the Department of Education and Early Childhood Development
This is the most recent version of the current curriculum materials as used by teachers in Nova Scotia.
The contents of this publication may be reproduced in part provided the intended use is for noncommercial purposes and full acknowledgment is given to the Nova Scotia Department of Education

Mathematics Grade 10 Outcomes

M01 Students will be expected to solve problems that involve linear measurement, using SI and imperial units of measure, estimation strategies, and measurement strategies.
Performance Indicators:
M01.01 Provide referents for linear measurements, including millimetre, centimetre, metre, kilometre, inch, foot, yard, and mile, and explain the choices.
M01.02 Compare SI and imperial units, using referents.
M01.03 Estimate a linear measure, using a referent, and explain the process used.
M01.04 Justify the choice of units used for determining a measurement in a problem-solving context.
M01.05 Solve problems that involve linear measure, using instruments such as rulers, calipers, or tape measures.
M01.06 Describe and explain a personal strategy used to determine a linear measurement (e.g., circumference of a bottle, length of a curve, and perimeter of the base of an irregular 3-D object).

M02 Students will be expected to apply proportional reasoning to problems that involve conversions between SI and imperial units of measure.

Performance Indicators:
M02.01 Explain how proportional reasoning can be used to convert a measurement within or between SI and imperial systems.
M02.02 Solve a problem that involves the conversion of units within or between SI and imperial systems.
M02.03 Verify, using unit analysis, a conversion within or between SI and imperial systems, and explain the conversion.
M02.04 Justify, using mental mathematics, the reasonableness of a solution to a conversion problem.

M03 Students will be expected to solve problems, using SI and imperial units, that involve the surface area and volume of 3-D objects, including right cones, right cylinders, right prisms, right pyramids, and spheres.
Performance Indicators:
M03.01 Sketch a diagram to represent a problem that involves surface area or volume.
M03.02 Determine the surface area of a right cone, right cylinder, right prism, right pyramid, or sphere, using an object or its labelled diagram.
M03.03 Determine the volume of a right cone, right cylinder, right prism, right pyramid, or sphere, using an object or its labelled diagram.
M03.04 Determine an unknown dimension of a right cone, right cylinder, right prism, right pyramid, or sphere, given the object's surface area or volume and the remaining dimensions.
M03.05 Solve a problem that involves surface area or volume, given a diagram of a composite 3-D object.
M03.06 Describe the relationship between the volumes of right cones and right cylinders with the same base and height, and right pyramids and right prisms with the same base and height.

```
M04 Students will be expected to develop and apply the primary trigonometric ratios (sine, cosine, tangent) to solve problems that involve right triangles.
Performance Indicators:
M04.01 Explain the relationships between similar right triangles and the definitions of the primary trigonometric ratios.
M04.02 Identify the hypotenuse of a right triangle and the opposite and adjacent sides for a given acute angle in the triangle.
M04.03 Solve right triangles, with or without technology.
M04.04 Solve a problem that involves one or more right triangles by applying the primary trigonometric ratios or the Pythagorean theorem.
M04.05 Solve a problem that involves indirect and direct measurement, using the trigonometric ratios, the Pythagorean theorem, and measurement instruments such as a clinometer or metre stick.
ANO2 Students will be expected to demonstrate an understanding of irrational numbers by representing, identifying, simplifying, and ordering irrational numbers. (Focus on simplifying radicals).
Performance Indicators:
AN02.01 Sort a set of numbers into rational and irrational numbers.
AN02.02 Determine an approximate value of a given irrational number.
AN02.03 Approximate the locations of irrational numbers on a number line, using a variety of strategies, and explain the reasoning.
AN02.04 Order a set of irrational numbers on a number line.
AN02.05 Express a radical as a mixed radical in simplest form (limited to numerical radicands).
AN02.06 Express a mixed radical as an entire radical (limited to numerical radicands).
AN02.07 Explain, using examples, the meaning of the index of a radical.
AN02.08 Represent, using a graphic organizer, the relationship among the subsets of the real numbers (natural, whole, integer, rational, irrational).
```

AN03 Students will be expected to demonstrate an understanding of powers with integral and rational exponents.

Performance Indicators:
AN03.01 Explain, using patterns, why $a^{-n}=\frac{1}{a^{n}}, a \neq 0$.
AN03.02 Explain, using patterns, why $\boldsymbol{a}^{\frac{1}{n}}=\sqrt[n]{\boldsymbol{a}}, \boldsymbol{n}>\mathbf{0}$.
AN03.03 Apply the following exponent laws to expressions with rational and variable bases and integral and rational exponents, and explain the reasoning.
$\left(a^{m}\right)\left(a^{n}\right)=a^{m+n}$
$a^{m} \div a^{n}=a^{m-n}, a \neq 0$
$\left(a^{m}\right)^{n}=a^{m n}$
$(a b)^{m}=a^{m} b^{n}$
$\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}, b \neq 0$
AN03.04 Express powers with rational exponents as radicals and vice versa, when m and n are natural numbers, and x is a rational number.
$x^{\frac{m}{n}}=\left(x^{\frac{1}{n}}\right)^{m}=(\sqrt[n]{x})^{m} \quad$ and $x^{\frac{m}{n}}=\left(x^{m}\right)^{\frac{1}{n}}=\sqrt[n]{x^{m}}$
AN03.05 Solve a problem that involves exponent laws or radicals.
AN03.06 Identify and correct errors in a simplification of an expression that involves powers.
AN04 Students will be expected to demonstrate an understanding of the multiplication of polynomial expressions (limited to monomials, binomials, and trinomials), concretely,
pictorially, and symbolically.
Performance Indicators:
AN04.01 Model the multiplication of two given binomials, concretely or pictorially, and record the process symbolically.
AN04.02 Relate the multiplication of two binomial expressions to an area model.
AN04.03 Explain, using examples, the relationship between the multiplication of binomials and the multiplication of two-digit numbers.
AN04.04 Verify a polynomial product by substituting numbers for the variables.
AN04.05 Multiply two polynomials symbolically, and combine like terms in the product.
AN04.06 Generalize and explain a strategy for multiplication of polynomials.
AN04.07 Identify and explain errors in a solution for a polynomial multiplication.

```
ANO5 Students will be expected to demonstrate an understanding of common factors and
trinomial factoring, concretely, pictorially, and symbolically.
Performance Indicators:
AN05.01 Determine the common factors in the terms of a polynomial, and express the
    polynomial in factored form.
AN05.02 Model the factoring of a trinomial, concretely or pictorially, and record the process
        symbolically.
AN05.03 Factor a polynomial that is a difference of squares, and explain why it is a special
    case of trinomial factoring where \(b=0\).
AN05.04 Identify and explain errors in a polynomial factorization.
AN05.05 Factor a polynomial, and verify by multiplying the factors.
AN05.06 Explain, using examples, the relationship between multiplication and factoring of
    polynomials.
AN05.07 Generalize and explain strategies used to factor a trinomial.
AN05.08 Express a polynomial as a product of its factors.
RF01 Students will be expected to interpret and explain the relationships among data, graphs,
and situations.
Performance Indicators:
RF01.01 Graph, with or without technology, a set of data, and determine the restrictions on
    the domain and range.
RF01.02 Explain why data points should or should not be connected on the graph for a
    situation.
RF01.03 Describe a possible situation for a given graph.
RF01.04 Sketch a possible graph for a given situation.
RF01.05 Determine, and express in a variety of ways, the domain and range of a graph, a set
    of ordered pairs, or a table of values.
RF02 Students will be expected to demonstrate an understanding of relations and functions.
Performance Indicators:
RF02.01 Explain, using examples, why some relations are not functions but all functions are
    relations.
RF02.02 Determine if a set of ordered pairs represents a function.
RF02.03 Sort a set of graphs as functions or non-functions.
RF02.04 Generalize and explain rules for determining whether graphs and sets of ordered
    pairs represent functions.
```

RF03 Students will be expected to demonstrate an understanding of slope with respect to rise and run, line segments and lines, rate of change, parallel lines, and perpendicular lines.

Performance Indicators:

RF03.01 Determine the slope of a line segment by measuring or calculating the rise and run.
RF03.02 Classify lines in a given set as having positive or negative slopes.
RF03.03 Explain the meaning of the slope of a horizontal or vertical line.
RF03.04 Explain why the slope of a line can be determined by using any two points on that line.
RF03.05 Explain, using examples, slope as a rate of change.
RF03.06 Draw a line, given its slope and a point on the line.
RF03.07 Determine another point on a line, given the slope and a point on the line.
RF03.08 Generalize and apply a rule for determining whether two lines are parallel or perpendicular.
RF03.09 Solve a contextual problem involving slope.
RF04 Students will be expected to describe and represent linear relations, using words, ordered pairs, tables of values, graphs, and equations.

Performance Indicators:
RF04.01 Identify independent and dependent variables in a given context.
RF04.02 Determine whether a situation represents a linear relation, and explain why or why not.
RF04.03 Determine whether a graph represents a linear relation, and explain why or why not.
RF04.04 Determine whether a table of values or a set of ordered pairs represents a linear relation, and explain why or why not.
RF04.05 Draw a graph from a set of ordered pairs within a given situation, and determine whether the relationship between the variables is linear.
RF04.06 Determine whether an equation represents a linear relation, and explain why or why not.
RF04.07 Match corresponding representations of linear relations.
RF05 Students will be expected to determine the characteristics of the graphs of linear relations, including the intercepts, slope, domain, and range.

Performance Indicators:

RF05.01 Determine the intercepts of the graph of a linear relation, and state the intercepts as values or ordered pairs.
RF05.02 Determine the slope of the graph of a linear relation.
RF05.03 Determine the domain and range of the graph of a linear relation.
RF05.04 Sketch a linear relation that has one intercept, two intercepts, or an infinite number of intercepts.
RF05.05 Identify the graph that corresponds to a given slope and y-intercept.
RF05.06 Identify the slope and y-intercept that correspond to a given graph.
RF05.07 Solve a contextual problem that involves intercepts, slope, domain, or range of a linear relation.

RF06 Students will be expected to relate linear relations to their graphs, expressed in:

- slope-intercept form $(y=m x+b)$
- general form $(A x+B y+C=0)$
- slope-point form $\left(y-y_{1}\right)=m\left(x-x_{1}\right)$

Performance Indicators:

RF06.01 Express a linear relation in different forms, and compare the graphs.
RF06.02 Rewrite a linear relation in either slope-intercept or general form.
RF06.03 Generalize and explain strategies for graphing a linear relation in slope-intercept, general, or slope-point form.
RF06.04 Graph, with and without technology, a linear relation given in slope-intercept, general, or slope-point form, and explain the strategy used to create the graph.
RF06.05 Identify equivalent linear relations from a set of linear relations.
RF06.06 Match a set of linear relations to their graphs.
RF07 Students will be expected to determine the equation of a linear relation to solve problems, given a graph, a point and the slope, two points, and a point and the equation of a parallel or perpendicular line.

Performance Indicators:

RF07.01 Determine the slope and y-intercept of a given linear relation from its graph, and write the equation in the form $y=m x+b$.
RF07.02 Write the equation of a linear relation, given its slope and the coordinates of a point on the line, and explain the reasoning.
RF07.03 Write the equation of a linear relation, given the coordinates of two points on the line, and explain the reasoning.
RF07.04 Write the equation of a linear relation, given the coordinates of a point on the line and the equation of a parallel or perpendicular line, and explain the reasoning.
RF07.05 Graph linear data generated from a context, and write the equation of the resulting line.
RF07.06 Determine the equation of the line of best fit from a scatterplot using technology and determine the correlation.
RF07.07 Solve a problem, using the equation of a linear relation.
RF09 Students will be expected to represent a linear function, using function notation.

Performance Indicators:

RF09.01 Express the equation of a linear function in two variables, using function notation.
RF09.02 Express an equation given in function notation as a linear function in two variables.
RF09.03 Determine the related range value, given a domain value for a linear function (e.g., if $f(x)=3 x-2$, determine $f(-1)$).

RF09.04 Determine the related domain value, given a range value for a linear function (e.g., if $g(t)=7+t$, determine t so that $g(t)=15$).

RF09.05 Sketch the graph of a linear function expressed in function notation.

RF10 Students will be expected to solve problems that involve systems of linear equations in two variables, graphically and algebraically.

Performance Indicators:

RF10.01 Model a situation, using a system of linear equations.
RF10.02 Relate a system of linear equations to the context of a problem.
RF10.03 Determine and verify the solution of a system of linear equations graphically, with and without technology.
RF10.04 Explain the meaning of the point of intersection of a system of linear equations.
RF10.05 Determine and verify the solution of a system of linear equations algebraically.
RF10.06 Explain, using examples, why a system of equations may have no solution, one solution, or an infinite number of solutions.
RF10.07 Explain a strategy to solve a system of linear equations.
RF10.08 Solve a problem that involves a system of linear equations.
FM01 Students will be expected to solve problems that involve unit pricing and currency exchange, using proportional reasoning

Performance Indicators:

FM01.01 Compare the unit price of two or more given items.
FM01.02 Solve problems that involve determining the best buy, and explain the choice in terms of the cost as well as other factors, such as quality and quantity.
FM01.03 Compare, using examples, different sales promotion techniques.
FM01.04 Determine the percent increase or decrease for a given original and new price.
FM01.05 Solve, using proportional reasoning, a contextual problem that involves currency exchange.
FM01.06 Explain the difference between the selling rate and purchasing rate for currency exchange.
FM01.07 Explain how to estimate the cost of items in Canadian currency while in a foreign country, and explain why this may be important.
FM01.08 Convert between Canadian currency and foreign currencies, using formulas, charts, or tables.
\(\left.\begin{array}{|l}\hline FM02 Students will be expected to demonstrate an understanding of income to calculate

gross pay and net pay, including wages, salary, contracts, commissions, and piecework.

Performance Indicators:

FM02.01 Describe, using examples, various methods of earning income.

FM02.02 Identify and list jobs that commonly use different methods of earning income (e.g.,

hourly wage, wage and tips, salary, commission, contract, bonus, shift premiums).

FM02.03 Determine in decimal form, from a time schedule, the total time worked in hours and

minutes, including time and a half and/or double time.\end{array}\right\}\)| FM02.04 Determine gross pay from given or calculated hours worked when given the base |
| ---: |
| hourly wage, with and without tips the base hourly wage, plus overtime (time and a |
| half, double time) |

